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LETI’ER TO THE EDITOR 

Three-state square lattice Potts antiferromagnet 

M P Nightingale and M Schick 
Department of Physics FM-15, University of Washington, Seattle, Washington 98195, 
USA 

Received 17 November 1981 

Abstract. The three-state antiferromagnetic Pot6 model on a square lattice is investigated 
via phenomenological renormalisation group methods. In contrast to previous calculations, 
our results indicate that there exists neither an ordered phase nor a massless phase with 
algebraic decay of correlations. The sole critical point is at zero temperature, where an 
essential singularity is found. 

The current interest in the antiferromagnetic q-state Potts model derives from the 
prediction of Berker and Kadanoff (1980) that for hypercubic systems with spatial 
dimensionality d exceeding a q-dependent critical value, a transition will take place into 
a low-temperature phase characterised by the algebraic decay of correlations (i.e. a 
massless phase). The most likely candidate for this behaviour in two dimensions is the 
three-state Potts model, to which we restrict ourselves henceforth. To be precise, we 
consider a square lattice with sites r = (i, j ) .  At each of these there is a spin sr = 0, 1,2. 
The reduced Hamiltonian (which includes a factor - l / k ~ T )  is given by . 

where (r, s) and (t,  U )  respectively run through the set of nearest- and next nearest- 
neighbour pairs of lattice sites. We consider the antiferromagnetic case J < 0 only. The 
next nearest-neighbour interaction J’, if non-zero, is taken positive. This ferro- 
magnetic interaction reduces the infinite (log-extensive) ground-state degeneracy to a 
sixfold one: each of the two simple square sublattices may condense into one of three 
ferromagnetic q = 3 Potts ground states, the states of the sublattices being different. The 
ordered state is characterised by the two-component order parameter 

The symmetry of these six ground states determines the universality class of the model: 
the six-state clock model. In the latter, ferromagnetic, model a spin of unit length at 
each lattice site is given by an angle 4 3 ,  n = 0, 1, . . . , 5 .  The symmetry trans- 
formations which leave the Hamiltonian invariant induce a group of transformations on 
the ground states. For the six-state clock model and the model defined by equation (1) 
the respective symmetry groups thus obtained are isomorphic. 

First consider the case J’ = 0. At zero temperature this q = 3 Potts model is 
equivalent to the ‘square’ ice model (Lieb and Wu 1972), which has a finite entropy 
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(Lieb 1967). The partition function of a generalisation of this model was calculated 
exactly by Baxter (1970). Denoting the number of sites in state i by ni and associating 
an activity z, with this state (i = 0, 1,2), he calculated the partition function 

2 = g(n0, n1, n2)zpz;'z;* 
where the summation is over all non-negative integers no, nl, and n2 such that 
no+ nl + n2 = N, the total number of lattice sites; g(n0,  n l ,  n2) is the number of allowed 
configurations with given no, nl, and n2. Baxter found a continuous phase transition at 
zo = z1 = z2 = 1 with (n,) = N/3. For zo> z1 = z2 one expects a condensation into one of 
two states: sr = 0 predominantly on either one of the two sublattices, which corresponds 
to M1 # 0, M2 = 0. For zo < zl = z2, on the other hand, one expects s, = 1 and s, = 2 to 
condense on different sublattices, corresponding to Ml = 0, M2 # 0. Although the 
order parameters M1 and M2 are not known, the continuous transition at zo = z1 = z2 = 
1 seems to imply that both vanish as zo+ 1, while the corresponding correlation 
functions decay algebraically as a function of distance. Thus, a massless phase, if 
present, would extend down to zero temperature. 

A diff erent phase diagram was suggested by Cardy (1981) and by Grest and Banavar 
(1981): an ordered low-temperature phase separated by a massless phase from a 
high-temperature disordered phase. However, there are serious problems with both of 
these calculations. First, Cardy's analysis applies to an x y  model in the presence of an 
infinitesimal staggered field. It is only for the infinite field that the Potts model is 
recovered. Second, the interpretation of the Monte Carlo data of Grest and Banavar 
due to the zero-temperature critical point is ambiguous and those authors are unable to 
draw any definite conclusions. 

In view of these difficulties we have performed a phenomenological renormalisation 
calculation (Nightingale 1976, 1978). This method has been successfully applied to a 
variety of systems, using either a two-dimensional classical or a one-dimensional 
quantum mechanical formulation. In particular, this method has proven to be 
sufficiently powerful to detect the presence of a massless phase (Roomany and Wyld 
1980, Hamer and Barber 1981). 

The phenomenological renormalisation procedure may be summarised as follows. 
Using a transfer matrix technique, one calculates the inverse correlation length K (T, n) 
of an infinite strip with periodic boundary conditions of width n at temperature T. 
Given K as a function of both T and n, the renormalised temperature T6 = T6(T),  
associated with a rescaling using Kadanoff blocks of size e6, is implicitly defined by 

K (  T, n)  = e - b ~ (  T6, ePbn). (2) 
So as to be able to compare the functions 7'6 obtained from systems of increasingsizes, it 
is convenient to define P =dT/db, the generator of the infinitesimal transformation 
Tsb = PSb. From equation (2) it follows that 

From data of strips of sizes nl  and n 2  one obtains the approximation 

1 + ln(K*/Kz)/ln(n 1/n2) 
( K T K ~ T I K ~ K ~ ) ~ ' ~  P(T) = (4) 
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In our analysis we shall employ the following result (Roomany and Wyld 1980). If 
for T close to some critical value Tc, @ displays powerlaw behaviour with an exponent 
v'+ 1, i.e. 

then K has an essential singularity 

IC -exp[-A(T- Tc)-'] 
as one sees immediately by integrating equation ( 5 )  and substituting the result in the 
scaling relation (2). 

Calculating @ for the pure Potts antiferromagnet (J' = 0) as described above we 
conclude that there is neither a massless nor an ordered phase. The only critical point is 
the Baxter point located at T = 0 .  Our conclusion is based on the similarity of the 
results of this calculation to those obtained from a similar calculation on the isotropic 
Ising antiferromagnet on a triangular lattice. In that model, T = 0 being the only critical 
point is an exact result: v' = 1 (Stephenson 1970). Figure 2 is again a log-log plot of @ 
against T. We find fi = 0.75. In the Potts case we obtain v' = 1.3. 
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Figwe 1. Log-log plot of the f3 function for 
the antiferromagnetic q = 3 Potts model, 
showing powerlaw behaviour as a function of 
T; approximations are obtained from system 
sizes nl=4,6,8 and nz=2,4,6. 

Figrw 2. Plot qualitatively similar to figure 1 for the 
antiferromagnetic triangular Ising made1 obtained from 
system sizes nl = 6,9, 12 and nz = 3,6,9. 

The /3 function shown in figure 1 was calculated using a symmetric transfer matrix; 
the triangular lattice was obtained from a square one by adding next nearest-neighbour 
bonds along diagonals alternating from row to row in the infinite direction of the 
periodic strip. 
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We have also considered the effects of a next nearest-neighbour ferromagnetic 
interaction J'. Our results for p ( T )  are shown in figure 3 for four values of J'/IJl. As /3 
vanishes at T = 0, ,the temperature derivatives are negative there, which implies the 
existence of a phase with long-range order at low temperatures. The nature of the 
transition to this phase is unclear from the data. However, it is believed that the 
six-state clock model (which contains the 4 = 6 Potts model as a special case) orders 
either via a first-order transition or via a massless phase (Baxter 1973, Elitzur et a1 
1979). The signature of the former is a divergent slope at T = T, of P(T) (Blote et a1 
1981), which is inconsistent with our data. The signature of the latter is a finite region 
over which /3( 2') = 0, which is not inconsistent with it. Much more clearly indicated is 
the linear dependence of the transition region on J', which reinforces our conclusion 
that the three-state Pot& model with nearest-neighbour interactions has but one 
transition: at zero temperature. 
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Ngwe 3. The /3 function for the antiferromagnetic q = 3 Potts model with ferromagnetic 
next nearest-neighbourcouplingsfor J'/(JI = 0.25,0.5,1.0,1.5. Syatemsizes: nl = 6,4 and 
n2 = 4,2. 
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